Lab 2 - Decision Trees

1 - Check we have required libraries


In [ ]:
# Pandas Data Library
!pip install --upgrade pandas

In [ ]:
# Scikit-Learn
!pip install --upgrade sklearn

In [ ]:
# Install Graphviz visualization
!sudo apt install python-pydot python-pydot-ng graphviz

In [ ]:
# Pydotplus visualization
!pip install --upgrade pydotplus

2 - Load iris flower data


In [ ]:
import sklearn.datasets as datasets
import pandas as pd

In [ ]:
iris=datasets.load_iris()
df=pd.DataFrame(iris.data, columns=iris.feature_names)
y=iris.target

3 - Define decision tree classifier


In [ ]:
from sklearn.tree import DecisionTreeClassifier
dtree=DecisionTreeClassifier()
dtree.fit(df,y)

4 - Create visualization plot


In [ ]:
from sklearn.externals.six import StringIO  
from IPython.display import Image  
from sklearn.tree import export_graphviz
import pydotplus

In [ ]:
dot_data = StringIO()
export_graphviz(dtree, out_file=dot_data,  
                filled=True, rounded=True,
                special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())  
Image(graph.create_png())